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Abstract

The Empirical Mode Decomposition (EMD) is applied here in two dimensions over the
sphere to demonstrate its potential as a data-driven method of separating the different
scales of spatial variability in a geophysical (climatological/meteorological) field. After
a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its5

application on the sphere are explained, in particular via the use of a zonal equal area
partitioning. The EMD is first applied to a artificial dataset, demonstrating its capability
in extracting the different (known) scales embedded in the field. The decomposition is
then applied to a global mean surface temperature dataset, and we show qualitatively
that it extracts successively larger scales of temperature variations related for example10

to the topographic and large-scale, solar radiation forcing. We propose that EMD can
be used as a global data-adaptative filter, which will be useful in analyzing geophysical
phenomena that arise as the result of forcings at multiple spatial scales.

1 Introduction

Variability in the climate system occurs at a large range of space and time scales. One15

challenge of climate data analysis is to separate these scales and their interactions.
This issue is important for the understanding and the prediction of the variability of the
climate of the Earth. If one can identify the intrinsic scales of variations, extract the
corresponding signal and analyse the relationships with other signals, at the same or
at a different level, one can then get an idea of the relationships, in terms of physical or20

statistical dependency, of variability at different scales.
For the last 50 years or so a great deal of effort has been put into the development,

refinement and application of statistical methods that help to achieve this goal of sepa-
rating the signal from the noise and identifying the preferred scales of variations in both
time and space.25

In one dimension, variations can be separated using Fourier series, wavelets, etc.
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The power spectrum of a one dimensionaltime-series can be decomposed into its pre-
ferred frequency components, hence the preferred time-scales of variations. However,
though widely used, these methods however rely on quite strong assumptions: most
especially stationarity and predefiner basis functions.

In space, the problem of scale separation is much more difficult. If time is a natural,5

sensible direction along which perform the analysis in one dimension, in two dimen-
sional space there is no obvious and natural preferred direction. So on a global scale,
it would be arbitrary, although convenient if one is using Fourier or Wavelet methods,
to perform scale separation following e.g. only latitudes and longitudes. Furthermore,
although there are definite periodicities in the rotation of the Earth, weather and climate10

are not truly periodic, so the use of a lat-long co-ordinate system is pertinent only when
one searches a-priori for given structures (e.g. wavelike patterns at the high latitudes).
However, this analysis presupposes that we have an a-priori knowledge of the form of
the embedded scales.

Until recently, there has been no objective method that could allow for a true sepa-15

ration of the different scales of variations of a geophysical field in space. For example,
Empirical Orthogonal Functions (EOFs) and their derivatives have been widely used
in climatology/meteorology (e.g. Preisendorfer, 1988), they seek to maximise the vari-
ance in time, associated with a set of hierarchical EOF (spatial patterns) to Principal
Components (time-series) that describe the variations in sign and amplitude of these20

patterns, but as such EOFs potentially mix different scales of variations in both in time
and space.

Recently a new method, namely Empirical Mode Decomposition (called EMD here-
after) has been introduced by Huang et al. (1998) for the analysis of 1-D signals in the
context of time-series analysis. The basic idea of EMD is to allow for an adaptive and25

unsupervised representation of the basic components of linear and non-linear signals
and is designed to accommodate non-stationarity in the series.

This method has been recently extended in two dimensions (Linderheld, 2002;
Nunes et al., 2003). The 2-D decomposition has also been used in the context of
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the analysis of radar rainfall fields at high resolution by Sinclair and Pegram (2005)
where a full justification for the method is available, although an outline will be offered
later in this paper.

One of the difficulties associated with 1-D EMD is the treatment of the ends of the
bounding functions, requiring some (non-objective) decisions to be made in order to5

proceed (Chiew et al., 2005; Peel et al., 2005). In the 2-D EMD application in radar
fields, the edges of the wet areas are well defined, so the ending problem is solved,
since the envelopes of the extrema at any stage of the decomposition process are set
implicitly to zero.

The beauty of decomposing a field on the sphere is that there are no edge or end10

effects. What is more, on the sphere, it is particularly advantageous to dispense with
a formal co-ordinate system and to compute the distances between points of interest
(extrema in the decomposition process), as one would do in Kriging a field of randomly
arranged points in 2-D. It is precisely this thinking that allows us to treat each observa-
tion with the same weight, in contrast with methods applied to the lat-long grid which15

cannot sensibly ascribe the same weight to values at high as well as low latitudes.
The goal of this paper is to demonstrate how the 2-D EMD can be applied on the

sphere to separate different spatial scales embedded in a field. It will be shown in par-
ticular applied as a data adaptative spatial filter to remove the smaller scale variations
to retain only the larger ones.20

The paper is organized as follows: Sect. 2 presents the zonal equal area partitioning
of the sphere, used to adequately represent the data on the sphere on equal areas
for the requirements of the EMD analysis. Section 3 presents an outline of the basic
principles and algorithm of the EMD in one dimension, while the fourth section presents
the principles of its extension to the 2-D case. The algorithm is then applied on a simple25

artificial dataset to demonstrate its viability in Sect. 5. In Sect. 6, a first application
on the Surface Temperature field obtained from a reanalysis is then presented and
we show how the 2-D EMD on the sphere can be used to filter out the local scales
of variations to retain only the larger ones. Conclusions, future developments and
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potential applications are drawn in Sect. 7.

2 The zonal equal area partitioning of the sphere

The first step is to find an appropriate projection to represent/map the data on the
sphere for the purpose of 2-D EMD analysis.

Global-scale climatological data, whether it comes from observations, Numerical5

model outputs, reanalyses, etc. are usually provided on a regular grid, for which the
number of longitude points per latitude is always the same, so that for a 2.5◦ resolu-
tion, it gives a 72×144 matrix. This presents a set of problems: i) the data points are
not representative of equal areas, at the equator the mean area for a standard 2.5◦

resolution grid is 12 345 square kilometers, while near the poles, at 87.5 degrees, it is10

538 km2, i.e. reduced by a factor of 23 ii) the data at the pole are surrogate, stretched
along the longitudes to match the regular grid.

The two properties of the physical space that are required for EMD to work with-
out supervision are two: i) continuous (no edges) ii) the points should be relatively
equidistant, i.e. representative of a roughly equal area. So, in order to apply the EMD15

on the sphere, we need to first resample/interpolate the original data onto a physical
partitioning of the sphere that matches these requirements.

Recently, a method for equal are partitioning of the sphere that respects these re-
quirements has been presented (Leopardi, 2006). A Recursive Zonal Equal Area par-
tition is a partition of Sdim (the unit sphere in the dim+1 Euclidean space R(dim+1)) into20

a finite number of regions of equal area. The area of each region is defined using
the Lebesgue measure inherited from R(dim+1). Each region is defined as the product
of intervals in spherical polar coordinates. The centre point of a region (element) is
defined via the centre of each interval, with the exception of the polar caps, where the
centre of the region is simply the centre of the spherical cap (hence the geographical25

pole). One of the advantages of this partitioning (in contrast to triangulation which was
considered but rejected) is that each edge of the spherical trapezium lies on a latitude
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or longitude, making interpolation from a lat-long grid relatively easy. Figure 1 provides
an example of a partition of S2 into 100 elements of equal area.

For a partition of the sphere into 6500 elements, the number of latitude bands is
73, and the maximum number of longitude separations (symmetrical each side of the
equator at ±1.2697◦) is 144, which fortuitously fits nicely with the 2.5◦ resolution of the5

data examined in Sect. 6. The regular grid was then interpolated onto this equal area
partition, using the average value of the points whose centres fall in the target area –
a variation of the nearest neighbour technique; at the equator there is an exact match,
while at the poles, 144 points are averaged on the target.

3 The basic principles of the EMD in one dimension10

The basic idea embodied in the EMD analysis, as introduced by Huang et al. (1998), is
to allow for an adaptive and unsupervised representation of the intrinsic components
of linear and non-linear signals based purely on the properties observed in the data
without appealing to the concept of stationarity. As Huang et al. (1998) point out in
their abstract: “This decomposition method is adaptive and therefore highly efficient.15

Since the decomposition is based on the local characteristic time scale of the data, it
is applicable to nonlinear and non-stationary processes.”

Few sequences of observations of natural phenomena are long enough to test the
hypothesis of stationarity and frequently, the phenomena are patently non-stationary.
The EMD algorithm copes with stationarity (or the lack of it) by ignoring the concept,20

embracing non-stationarity as a practical reality. For a fuller discussion of the gene-
sis of these ideas, see the Introduction of Huang et al. (1998), who also heuristically
demonstrate the implicit orthogonality of the sequences of Intrinsic Mode Functions
(IMFs) defined by the EMD algorithm.

In the application of the 1-D EMD algorithm, the possibly nonlinear signal, which25

may exhibit varying amplitude and local frequency modulation, is linearly decomposed
into a finite number of mutually quasi-orthogonal, zero mean, frequency and amplitude
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modulated signals, as well as a residual function which (i) exhibits a single extremum,
(ii) is a monotonic trend or (iii) is simply a constant. Although EMD is a relatively new
data analysis technique, its power and simplicity have encouraged its application in
many fields. It is beyond the scope of this paper to give a complete review of the
applications, however a few examples are cited here to give the reader a feeling for the5

broad scope of applications. Chiew et al. (2005) examine the one-dimensional EMD of
several annual streamflow time series to search for significant trends in the data, using
bootstrapping to test the statistical significance of identified trends. The technique has
been used extensively in the analysis of ocean wave data (Huang et al., 1999; Hwang
et al., 2003) as well as in the analysis of polar ice cover (Gloersen and Huang, 2003).10

EMD has also been applied in the analysis of seismological data by Zhang et al. (2003)
and has even been used to diagnose heart rate fluctuations (Balocchi et al., 2004). The
algorithm for 1-D EMD is readily available in the cited literature, so is not repeated here;
the 2-D extension is based on the 1-D algorithm and is elaborated in Sect. 4.

4 The extension of EMD to 2 dimensions on the sphere15

The 2-D EMD process is conceptually the same as in one dimension, except that the
curve fitting of the maxima and minima envelope now becomes a surface fitting ex-
ercise and the identification of the local extrema is performed in space to take into
account for the connectivity of the points. There is one difference in performing EMD
on the sphere as against on a surface with edges, like a flat map: there are no edges20

requiring special treatment as the surface is fully continuous. The introduction to the
2-D EMD method applied on a 2-D plane, and references to earlier supporting work,
are fully described by Sinclair and Pegram (2005), so only the essentials are repeated
here.

2-D EMD provides a truly two-dimensional analysis of the intrinsic oscillatory modes25

inherent in the data. Two-dimensional Fourier and Wavelet analyses are really ap-
plications of their one-dimensional counterparts in a number of principal directions.
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Fourier analysis concentrates on orthogonal “East-West” and “North-South” directions
(e.g. Press et al., 1992). Wavelet analysis can, in general, consider any direction of the
wavelet relative to the data, however a typical 2-D Wavelet analysis examines only hor-
izontal, vertical and diagonal orthonormal wavelet basis functions (Daubechies, 1992,
pp. 313; Kumar and Foufoula-Georgiou, 1993). In contrast, EMD produces a fully two5

dimensional decomposition of the data, based purely on spatial relationships between
the extrema, independent of the orientation of the coordinate system in which the data
are viewed. There is also a small change in terminology: in place of Implicit Mode
Functions (IMFs) in 1-D EMD, we choose to use Implicit Mode Surfaces (IMSs) in 2-D
EMD.10

4.1 Description of the algorithm

The algorithm follows intuitively from the one-dimensional case and may be briefly
summarized as follows:

1. Locate the extrema in the 2-D space including maximal and minimal plateaux.
On a rectangular grid, this is done by finding those points in the center of a 3×315

square of pixels which are larger/smaller than any of the eight surrounding points.
On the sphere partitioned using the Zonal Equal Area algorithm, it is sufficient to
identify the extrema relative to the centres of the six closest surrounding elements,
because of the staggering of the successive rings of elements.

2. Generate the bounding envelopes using appropriate surface fitting techniques.20

We suggest Kriging with a double exponential semivariogram whose correlation
length is set equal to double the average spacing between the elements at each
stage of the decomposition.

3. Compute the mean surface function as the average value of the upper and lower
envelopes fitted to the extrema, using the sifting technique which is standard in25

EMD, described in steps 4 and 5.
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4. Determine the first estimate of an IMS by subtracting the mean surface from the
data.

5. Iterate until the IMS mean surface function is close to zero everywhere.

6. Estimate the IMS and Residual.

7. If the Residual is a constant or a monotone trend, then stop;5

8. else return to step 2.

4.2 Surface fitting for extremal envelope generation

The generation of maximal and minimal envelopes is of key importance to a successful
2-D EMD implementation and is the most computationally intensive task. The problem
is a familiar one of collocating a smooth surface to randomly scattered data points in10

two-dimensions. There are several options available to achieve this. Ultimately the
fitting procedure reduces to computing the unknown value of the surface at a point
si=(xi , yi ), by some linear (or nonlinear) weighting of the known data. In general, a
basis function determines the influence of each known data point based on its spa-
tial position relative to the unknown point si . Nunes et al. (2003) and Delechelle et15

al. (2005) use radial basis functions while Linderhed uses bi-cubic splines (Linderhed,
2002) and later chooses the more suitable option of Thin Plate Splines (Linderhed,
2004). We tried radial basis functions (technically, conical Multiquadrics), which are
identical to Kriging (Cressie, 1991) with a purely linear semi-variogram model, but they
produced spurious local extrema which only showed up in the IMSs. We decided it20

would be more appropriate to select an an exponential variogram to model the enevel-
opes of the maxima and minima. We choose a correlation length equal to the average
distance between extrema at any stage of the decomposition, invoking Occam’s razor
in the spirit of Huang’s original derivation of EMD. The bounding surfaces are then
generated using Ordinary Kriging, ensuring that the surfaces are constrained to tend25

towards the mean surface of the extreme at distance.
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In essence, the 2-D EMD algorithm on the sphere provides a complete quasi-
orthogonal decomposition of the data, hence allows for a summation of the data over
a range of scales, thus providing, by analogy to the digital filter of one-dimensional
vectors, a data-adaptive spatial filter.

5 Application to an artificial example5

In order to test the 2-D algorithm on the sphere in controlled conditions, an artificial
global dataset is first created by summing two different fields presenting contrasted
patterns with different spatial scales. The first field (Fig. 2a) has been constructed as
a mix of scaled and translated Gaussian functions. It is assumed here to represent
relatively small scale variations of the scalar field.10

The second field consists in a simple meridional gradient from the North to the South
pole, and can be considered as the larger spatial scale into which the previous field is
embedded, it is presented in Fig. 3a and b the same way as the former.

The artificial field analysed simply consists in the sum of the two interpolated fields
and is presented in Fig. 3.15

The 2-D EMD algorithm is then applied to this artificial dataset to see if it is able to
retrieve the two different fields that constitute it.

3 IMS were required before a constant field (of value 38.3) was obtained as a resid-
ual. Their variances are respectively 129.0, 10.0 and 125.3. They are presented in
Fig. 5. Clearly the 1st IMS accounts directly for the first scale embedded in the field,20

while the 3rd IMS represents the large-scale gradient. The 2nd IMS is evidently unre-
alistic as it represents a pattern that has not been imposed in the field. However its
variance is extremely low and negligible in comparison to the two other IMS and thus
can be legitimely absorbed as a minor perturbation to either of the others. In summary,
the 2-D EMD on the sphere has been successful in retrieving the two fields constitut-25

ing the artificial field that we have constructed. In the next section we apply the same
algorithm to the surface temperature.
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6 Application to the surface air temperature

The surface air temperature (at 2 m) used here has been extracted from the ERA 15
reanalysis project (http://www.ecmwf.int). It is available on a 2.5×2.5◦ regular grid from
at a monthly time-step from january 1979 to December 1993. We make use here of
the long-term annual mean computed from the monthly values. The field shown on its5

regular 73×144 grid and interpolated on the zonal equal area partition of the sphere
are presented respectively in Fig. 5a and b.

The 2-D algorithm is then applied to this field the same way it was applied to the
artificial dataset presented in Sect. 5. 5 IMS are extracted before obtaining a residual
constant field (of value 286.3). They are presented in Fig. 6. Their variances are10

presented in Table 1.
The 2 last IMS have a very low variance, so only the first 3 IMSs will be discussed

hereafter.
The first IMS (Fig. 6a) represents the high frequency signal embedded in the temper-

ature field. The most striking features are the local high spatial variances associated to15

the presence of high mountaineous areas such as the Andes and the Himalayas. The
Antarctic and Greenland Ice-Caps and the strong temperature gradients associated
with the relatively warmer surrounding ocean masses are also responsible for a large
local variability. As such the 1st IMS accounts mainly for the small scale variability in
the surface temperature field associated with local forcings.20

The second IMS (Fig. 6b) represents clearly larger scale variations and has the
highest variance. The variance is related to a large extent to the temperature gradient
from the tropics to the poles, that is forced by the distribution of solar radiation. A very
prominent feature also extracted on this IMS is the presence of large areas of high
temperature values found in the Pacific Ocean, which we attribute to the warm pool.25

The third IMS (Fig. 6c), is related again to the large-scale gradient from the tropics
to the poles, minus the prominent warm pool region that has been extracted in the 2nd
IMS.
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The results presented above then confirm that the 3 first IMSs qualitatively represent
three different and hierarchical scales of the spatial organization of the global temper-
ature: local to regional scale variations linked to the topography and the presence of
ice-caps, the prominent warm pool region in the pacific, and the large-scale gradient
from the tropics to the poles related to mean solar forcing.5

As the sum of the all the IMSs plus the final residual is exactly equal to the original
field (see Sect. 3), one then can use the 2-D EMD as a filter to remove from a field the
high frequency variations, as a data-adaptative spatial filter. The following field (Fig. 7)
has been then obtained by summing the IMS#2 to 5 plus residual 5 and is therefore
equal to the first residual. The effect is to filter out the smaller scales topographically10

forced variations extracted in the 1st IMS.

7 Conclusions

Empirical Mode Decomposition has been applied to the analysis of a twodimensional
field on the sphere, taking advantage of the dataadaptive nature of the method and the
absence of edge or end effects on the sphere. In addition, the interpolation of data from15

a regular grid to a zonal equal area partition of the sphere allows each observation to
be treated with the same weight.

An artificial dataset was analyzed and the results demonstrate the ability of EMD
on the sphere to extract the different scales of spatial variations contained in a global
field. The same algorithm is thereafter applied to a real data set consisting of the20

longterm mean (1979–1993) of annual surface temperatures as given by the ECMWF
ERA 15 reanalysis system. The first three IMSs obtained from the decomposition of
the temperature field represent schematically three different and hierarchical scales of
the spatial organization of the global temperature: (i) local to regional scale variations
linked to the topography and the presence of icecaps, (ii) the prominent warm pool25

region in the Pacific, and (iii) the largescale gradient from the tropics to the poles related
to mean solar forcing. The temperature field was then reconstructed using only the
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large scale IMSs and the final residual, to demonstrate the ability of EMD to act as a
data adaptive filter, able (for example) to filter out the smaller scale variations related
to local forcings.

The potential applications of EMD on the sphere for climate data are numerous:
in the context of statistical analysis of the spacetime climate variability, the algorithm5

can be used prior to traditional techniques (such as PCA/EOF) to uncover the intrinsic
spatial scales contained in a field and filter out the unwanted scales of variations. EMD
could also be used, in the context of numerical simulations on Atmospheric General
Circulation Models, to create forcing fields having predefined scales of spatial variation.
We propose EMD on the sphere as an appropriate datadriven exploratory analysis tool10

for global geophysical data.
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Table 1. Variance of the IMSs obtained from the decomposition of the ERA surface temperature
field shown in Fig. 6.

IMS1 IMS2 IMS3 IMS4 IMS5

variance 37.0 51.0 30.7 1.1 0.3
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Fig. 1. A Zonal Equal Area partition of the sphere using 100 points.
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Interactive DiscussionFig. 2. (a) 1st field created by scaling and translating Gaussian functions: plotted on a regular
73×144 grid.
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Interactive DiscussionFig. 2. (b) 1st field created by scaling and translating Gaussian functions: interpolation onto a
zonal equal area partitioning of the sphere using 6500 points.
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Interactive DiscussionFig. 3. (a) 2nd field consisting of a meridional gradient from the North to the South pole:plotted
on a regular 73×144 grid.
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Interactive DiscussionFig. 3. (b) 2nd field consisting of a meridional gradient from the North to the South pole:
interpolation onto a zonal equal area partitioning of the sphere using 6500 points.
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Interactive DiscussionFig. 4. Artificial field produced by summing the fields shown in Figs. 2b and 3b, interpolated
onto a zonal equal area partitioning of the sphere using 6500 points.
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Fig. 5. (a) The 1st IMS of the artificial field, it’s variance is equal to 129.0.
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Fig. 5. (b) The 2nd IMS of the artificial field, it’s variance is equal to 10.
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Fig. 5. (c) The 3rd IMS of the artificial field, it’s variance is equal to 125.3.
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Interactive DiscussionFig. 6. (a) ERA 15 surface temperature longterm mean (1979–1993): plotted on a regular grid
with a 2.5◦ resolution.

430

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/405/2008/hessd-5-405-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/405/2008/hessd-5-405-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 405–435, 2008

EMD on the sphere

N. Fauchereau et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive DiscussionFig. 6. (b) ERA 15 surface temperature longterm mean (1979–1993): interpolated values onto
the zonal equal area partitioning of the sphere using 6500 points.
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Interactive DiscussionFig. 7. (a) The 1st IMS produced when performing EMD on the ERA 15 surface temperature
field.
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Interactive DiscussionFig. 7. (b) The 2nd IMS produced when performing EMD on the ERA 15 surface temperature
field.

433

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/405/2008/hessd-5-405-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/405/2008/hessd-5-405-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 405–435, 2008

EMD on the sphere

N. Fauchereau et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive DiscussionFig. 7. (c) The 3rd IMS produced when performing EMD on the ERA 15 surface temperature-
field.
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Interactive DiscussionFig. 8. Temperature field reconstructed from the sum of IMSs 2 to 5 and the 5th residual. This
is equivalent to the first residual.
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